Effect of Repeated Low-level Red Light on Myopia Prevention Among Children in China With Premyopia

A Randomized Controlled Trial

Xiangui He PhD | Jingjing Wang PhD | Zhuoting Zhu PhD | Kaidi Xiang MD | Xinzi Zhang MD | Bo Zhang MS | Jun Chen PhD | Jinliuxing Yang PhD | Linlin Du MPH | Chunjin Niu BS | Mei Leng BS | Jiannan Huang PhD | Kun Liu MD | Haidong Zou MD | Mingguang He PhD | Xun Xu MD

Purpose:

To investigate the efficacy and safety of RLRL in preventing incident myopia among children with premyopia.

Method:

Results:

The 12-month incidence of myopia was 40.8% in the RLRL group and 6.3% in the control group, a relative 33.4% reduction in incidence.

For children who did not have treatment interruption secondary to the COVID-9 pandemic, the incidence was 28.1%, a relative 54.1% reduction in incidence.

The RLRL group also had reduced myopic shifts in terms of AL (0.30mm vs 0.47mm) and SER (-0.35D vs -0.76D).

No adverse events or structural damage on OCT were noted.

Effect of Repeated Low-level Red Light on Myopia Prevention Among Children in China With Premyopia

A Randomized Controlled Trial

Xiangui He PhD | Jingjing Wang PhD | Zhuoting Zhu PhD | Kaidi Xiang MD | Xinzi Zhang MD | Bo Zhang MS | Jun Chen PhD | Jinliuxing Yang PhD | Linlin Du MPH | Chunjin Niu BS | Mei Leng BS | Jiannan Huang PhD | Kun Liu MD | Haidong Zou MD | Mingguang He PhD | Xun Xu MD

Outcome:

Table 1. Refractive and Biometric Outcomes at 12-Month Follow-up	(Intention-to-Treat Analysis)
--	-------------------------------

	Students, % (No./total No.)					
Outcome	Interventiona	Control	Risk difference, (95% CI) ^b	Relative risk (95% CI) ^c	Relative efficacy ^d	P value ^e
Incidence of myopia, %	40.8 (49/120)	61.3 (68/111)	20.4 (7.9 to 33.1)	0.67 (0.51 to 0.86)	33.4	.003
Mean (SD), change						
SER, D	-0.35 (0.54)	-0.76 (0.60)	-0.41 (-0.56 to -0.26)	NA	53.9	<.001
AL, mm	0.30 (0.27)	0.47 (0.25)	0.17 (0.11 to 0.23)	NA	36.2	<.001

 $Abbreviations: AL, axial \ length; D, \ diopters; NA, \ not \ applicable; SER, \ spherical \ equivalent \ refraction.$

- ^a The intervention group included those who continued the intervention and those with continued the intervention and those with
- b Risk difference, absolute efficacy = value in control group value in intervention group.
- ^c Relative risk = value in intervention group/value in control group.
- d Relative efficacy = (value in control group value in intervention group)/value in control group.
- $^{\rm e}$ The $\it t$ test was used for change of AL and SER, and the χ^2 test was used for incidence.

Figure 2. Axial Length (AL) Change Between the Intervention and Control Groups Over 12 Months

